SIAM MDS20 MS13 Advances in Subspace Learning and Clustering Mini-Symposium

/ June 15, 2020/

June 22, 2020 @ 1:30 pm – 2:00 pm

Title: Denoising via Early Stopping: Towards Demystifying Deep Image Priors

Abstract: Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Such neural networks in principle have the capacity to (over)fit any set of labels including significantly corrupted ones. Despite this (over)fitting capacity overparameterized networks have an intriguing robustness capability: they are surprisingly robust to label noise when first order methods with early stopping is used to train them. Even more surprising, one can remove noise and corruption from a natural image without using any training data what-so-ever, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to a single corrupted image. In this talk I will first discuss our recent results proving that overparameterized neural networks can indeed fit any labels. Then I will present theoretical results aimed at demystifying their robustness and denoising capabilities when trained via early-stopped gradient descent.


Mahdi Soltanolkotabi, University of Southern California, U.S

Join Zoom Meeting

Meeting ID: 982 2294 6324
Password: 143648

Share this Post