Spectral-Inspired Graph Neural Networks

Teresa Huang

Applied Mathematics and Statistics Mathematical Institute for Data Science

Mar 2022

Joint work with Soledad Villar(JHU), Carey Priebe(JHU), Da Zheng(Amazon)

Graph (Network) Embedding

- Learn a low-dimensional representation for nodes in a given graph while preserving structural information
- Perform subsequent inferences directly on graph embedding

Methods of Graph (Network) Embedding

- Spectral methods: global eigen-decomposition; unsupervised.
- Graph neural networks: local message passing; semi-supervised.

²Cape et al. 2019; Kipf et al. 2016.

Methods of Graph (Network) Embedding

- Spectral methods: global eigen-decomposition; unsupervised.
- Graph neural networks: local message passing; semi-supervised.

Definition (Adjacency Spectral Embedding (ASE) 1)

 $h_{ASE} = U_{d'} |\Sigma_{d'}|^{1/2}$, where $A = U \Sigma U^{\top}$, d' is the embedding dimension.

Definition (Graph Convolutional Network (GCN)²)

A *L*-layer GCN embedding is given by $h_{GCN} = \boldsymbol{z}^{(L)}$, where

$$oldsymbol{z}^{(l)} = \sigma(ar{A}oldsymbol{z}^{(l-1)}oldsymbol{W}^{(l-1)}), \quad oldsymbol{z}^0 = oldsymbol{X} \in \mathbb{R}^{n imes r}$$

with $\bar{A} = \tilde{D}^{-0.5} \tilde{A} \tilde{D}^{-0.5}$, $\tilde{A} = A + I$, $\tilde{D} = D + I$, $W^{(I)}$ is the *I*-th layer weight matrix and σ is the pointwise activation.

²Cape et al. 2019; Kipf et al. 2016.

Conventional Wisdom

GNNs have advantages over spectral methods because:

- they use node features;
- they use (some) label information to optimize end-to-end;
 - Unsupervised GCN fails in some simple generative models whereas semi-supervised ones succeed (Priebe et al. 2021).
- they perform better on sparse graphs;
- they enjoy computational advantages.

A1: Spectral Embedding with Node Features

Definition (Covariate-Assisted Spectral Embedding (CASE) ³)

Given graph A, node features X and a tuning parameter $\alpha \in [0, 1]$, $h_{CASE} = SVD(A + \alpha XX^{\top}).$

Definition (Multiple Adjacency Spectral Embedding (MASE)⁴)

Given graphs A_1, \dots, A_J , $h_{MASE} = \text{SVD}([h_{ASE_1}; \dots, h_{ASE_J}])$.

For example, given a graph A with node features X, we can obtain node similarity graph $A' = XX^{\top}$, and embed A, A' with MASE.

Contextual Stochastic Block Model (C-SBM)

- Symmetric two blocks;
- $A \sim P = SBM(B; n), B = [[p^2, pq]; [pq, q^2]]$ (rank-1).
- Node features $X_i | Y_i = 0 \sim \mathcal{N}(q, \sigma_q); X_i | Y_i = 1 \sim \mathcal{N}(p, \sigma_p)$

 XX^{\top}

Task: Node Classification

Generative Model:

•
$$A_{ij} \stackrel{ind}{\sim} Bernoulli(P), P = SBM; X_i | Y_i = k \stackrel{ind}{\sim} \mathcal{N}_k.$$

Data:

- Adjacency matrix $A \in \mathbb{R}^{n \times n}$, node features $\mathsf{X} \in \mathbb{R}^{n \times d}$
- *m* out of *n* labels: Y_1, \cdots, Y_m

Method:

- Unsupervised learning:
 - Obtain graph embedding *h*(*A*; *X*) without label supervision;
 - Train a linear classifier W^L based on $\hat{T}_{m,n} = \{(\hat{X}_i, Y_i)\}_{i \in \{1, \cdots, m\}}$
- Semi-supervised learning:
 - Learn jointly a linear classifier W^L and the graph embedding $h(A; X; Y_1 \cdots Y_m)$ with (partial) label supervision.

Evaluation: evaluate the classification accuracy on the test set.

Results

• A2: semi-supervised GCN on node feature does not outperform spectral methods (except CASE, by design)

Injecting global spectral information to local GNN

Definition (Spectral-inspired GNN)

 $h_{GCN(MASE)} = [h_{GCN}; h_{MASE}].$

Many other techniques in the wild:

- Concatenate $A \in \mathbb{R}^{n \times n}$ and $X \in \mathbb{R}^{n \times d}$ (Buffelli et al. 2022);
- Positional Encoding using spectral embeddings in Transformer-based GNNs (Kreuzer et al. 2021; Ying et al. 2021).

A3: GNNs perform better on sparse graphs

 Q3: Can GNNs learn from biased spectral information on sparse graphs?

- Arroyo, Jesús et al. (2021). "Inference for multiple heterogeneous networks with a common invariant subspace". In: Journal of Machine Learning Research 22.142, pp. 1–49.
- Binkiewicz, Norbert, Joshua T Vogelstein, and Karl Rohe (2017). "Covariate-assisted spectral clustering". In: *Biometrika* 104.2, pp. 361–377.
- Buffelli, Davide and Fabio Vandin (2022). "The Impact of Global Structural Information in Graph Neural Networks Applications". In: Data 7.1, p. 10.
- Cape, Joshua, Minh Tang, and Carey E. Priebe (Oct. 2019). "The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics". In: Annals of Statistics 47.5, pp. 2405–2439. DOI: 10.1214/18-A0S1752.
- Kipf, Thomas N and Max Welling (2016). "Semi-supervised classification with graph convolutional networks". In: arXiv preprint arXiv:1609.02907.
- Kreuzer, Devin et al. (2021). "Rethinking Graph Transformers with Spectral Attention". In: Advances in Neural Information Processing Systems.
- Priebe, Carey E et al. (2021). "A Simple Spectral Failure Mode for Graph Convolutional Networks". In: IEEE Transactions on Pattern Analysis and Machine Intelligence.
- Ying, Chengxuan et al. (2021). "Do Transformers Really Perform Badly for Graph Representation?" In: Advances in Neural Information Processing Systems 34.

5

