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Graph (Network) Embedding
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Graph Classification

Graph Space Embedding Space Subsequent Inferences

® |earn a low-dimensional representation for nodes in a given
graph while preserving structural information

e Perform subsequent inferences directly on graph embedding




Methods of Graph (Network) Embedding

® Spectral methods: global eigen-decomposition; unsupervised.

® Graph neural networks: local message passing; semi-supervised.

2Cape et al. 2019; Kipf et al. 2016.




Methods of Graph (Network) Embedding

® Spectral methods: global eigen-decomposition; unsupervised.

® Graph neural networks: local message passing; semi-supervised.

Definition (Adjacency Spectral Embedding (ASE) 1)
hase = Ugr|Zg|*/?, where A= ULZUT, d’ is the embedding dimension.

Definition (Graph Convolutional Network (GCN) 2)
A L-layer GCN embedding is given by hgcy = z(1), where
20 = o(AZU-DWUD), 20 = X e R

with A= D 05AD%5 A=A+ [,D=D+1, W is the I-th layer
weight matrix and o is the pointwise activation.

2Cape et al. 2019; Kipf et al. 2016.




Conventional Wisdom

GNNs have advantages over spectral methods because:

@ they use node features;
@ they use (some) label information to optimize end-to-end;

® Unsupervised GCN fails in some simple generative models
whereas semi-supervised ones succeed (Priebe et al. 2021).

© they perform better on sparse graphs;

@ they enjoy computational advantages.




Al: Spectral Embedding with Node Features

Definition (Covariate-Assisted Spectral Embedding (CASE) 3)

Given graph A, node features X and a tuning parameter « € [0, 1],
hcase = SVD(A + aXXT).

Definition (Multiple Adjacency Spectral Embedding (MASE) #)

Given graphs Ai,--- Ay, hyase = SVD([hASEl; cee hASEJ])-

For example, given a graph A with node features X, we can obtain
node similarity graph A’ = XX, and embed A, A’ with MASE.

4Arroyo et al. 2021; Binkiewicz et al. 2017.




Contextual Stochastic Block Model (C-SBM)

® Symmetric two blocks;
* A~ P =SBM(B;n), B =[[p* pql;[pq, q°]] (rank-1).
¢ Node features X;j|Y; =0~ N(q,04); Xi|Yi =1~ N(p,0p)
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Task: Node Classification

Generative Model:
o Ai; " Bernoulli(P), P = SBM; Xi|Y; = k "¢ N.
Data:
e Adjacency matrix A € R"*", node features X € R"*¢
® mout of nlabels: Yi,---, Yy,
Method:

® Unsupervised learning:

® Obtain graph embedding h(A; X) without label supervision;
® Train a linear classifier W' based on

7\-m¢n = {()%,‘, )/")}I'E{l,“' ,m}
® Semi-supervised learning:

® Learn jointly a linear classifier W' and the graph embedding
h(A; X; Y1+ Yn) with (partial) label supervision.

Evaluation: evaluate the classification accuracy on the test set.




Results

Performance on dense graphs (p = 1/3, g = 1/4, train_pct=0.1, 30 runs)
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e A2: semi-supervised GCN on node feature does not outperform
spectral methods (except CASE, by design)




Injecting global spectral information to local GNN

Definition (Spectral-inspired GNN)

hcenimase) = [heen: hmase]-
Many other techniques in the wild:

e Concatenate A € R™" and X € R"*? (Buffelli et al. 2022);

® Positional Encoding using spectral embeddings in
Transformer-based GNNs (Kreuzer et al. 2021; Ying et al. 2021).




A3: GNNs perform better on sparse graphs

0.62 Performance on Sparse Graph (p = 1/15, g =1/30, train_pct=0.1, 30 runs)
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® Q3: Can GNNs learn from biased spectral information on sparse
graphs?
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