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Graph (Network) Embedding

• Learn a low-dimensional representation for nodes in a given
graph while preserving structural information
• Perform subsequent inferences directly on graph embedding
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Methods of Graph (Network) Embedding

• Spectral methods: global eigen-decomposition; unsupervised.
• Graph neural networks: local message passing; semi-supervised.

Definition (Adjacency Spectral Embedding (ASE) 1)

hASE = Ud′ |Σd′ |1/2, where A = UΣU>, d ′ is the embedding dimension.

Definition (Graph Convolutional Network (GCN) 2)

A L-layer GCN embedding is given by hGCN = z (L), where

z (l) = σ(Āz (l−1)W (l−1)), z0 = X ∈ Rn×r

with Ā = D̃−0.5ÃD̃−0.5, Ã = A + I , D̃ = D + I , W (l) is the l-th layer
weight matrix and σ is the pointwise activation.

2Cape et al. 2019; Kipf et al. 2016.
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Conventional Wisdom

GNNs have advantages over spectral methods because:
1 they use node features;
2 they use (some) label information to optimize end-to-end;

• Unsupervised GCN fails in some simple generative models
whereas semi-supervised ones succeed (Priebe et al. 2021).

3 they perform better on sparse graphs;
4 they enjoy computational advantages.
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A1: Spectral Embedding with Node Features

Definition (Covariate-Assisted Spectral Embedding (CASE) 3)

Given graph A, node features X and a tuning parameter α ∈ [0, 1],
hCASE = SVD(A + αXX>).

Definition (Multiple Adjacency Spectral Embedding (MASE) 4)

Given graphs A1, · · · ,AJ , hMASE = SVD([hASE1 ; · · · , hASEJ
]).

For example, given a graph A with node features X, we can obtain
node similarity graph A′ = XX>, and embed A,A′ with MASE.

4Arroyo et al. 2021; Binkiewicz et al. 2017.
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Contextual Stochastic Block Model (C-SBM)

• Symmetric two blocks;
• A ∼ P = SBM(B; n), B = [[p2, pq]; [pq, q2]] (rank-1).
• Node features Xi |Yi = 0 ∼ N (q, σq);Xi |Yi = 1 ∼ N (p, σp)
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Task: Node Classification

Generative Model:
• Ai j

ind∼ Bernoulli(P),P = SBM; Xi |Yi = k
ind∼ Nk .

Data:
• Adjacency matrix A ∈ Rn×n, node features X ∈ Rn×d

• m out of n labels: Y1, · · · ,Ym

Method:
• Unsupervised learning:

• Obtain graph embedding h(A;X ) without label supervision;
• Train a linear classifier W L based on
T̂m,n = {(X̂i ,Yi )}i∈{1,··· ,m}

• Semi-supervised learning:
• Learn jointly a linear classifier W L and the graph embedding

h(A;X ;Y1 · · ·Ym) with (partial) label supervision.

Evaluation: evaluate the classification accuracy on the test set.
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Results

• A2: semi-supervised GCN on node feature does not outperform
spectral methods (except CASE, by design)
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Injecting global spectral information to local GNN

Definition (Spectral-inspired GNN)

hGCN(MASE) = [hGCN ; hMASE ].

Many other techniques in the wild:

• Concatenate A ∈ Rn×n and X ∈ Rn×d (Buffelli et al. 2022);

• Positional Encoding using spectral embeddings in
Transformer-based GNNs (Kreuzer et al. 2021; Ying et al. 2021).
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A3: GNNs perform better on sparse graphs

• Q3: Can GNNs learn from biased spectral information on sparse
graphs?
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