Adversarial Robustness of Sparse Local Lipschitz Predictors

Ramchandran Muthukumar

January 17, 2023

Adversarial Robustness

 $+.007 \times$

=

x "panda" 57.7% confidence

"nematode" 8.2% confidence

 $\begin{array}{c} x + \\ \epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, x, y)) \\ \text{"gibbon"} \\ 99.3 \% \text{ confidence} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Certified Robustness : What is the minimal size of an adversarial perturbation for a predictor h at input x.
- Robust Generalization : When will a predictor h learnt on a training data S_T generalize to corrupted unseen data ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our Contribution

- Sensitivity of functions under structural invariance.
- Understanding robust properties of neural networks.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Preliminary Notation

- Input space : $\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^d, \|\mathbf{x}\|_2 \leq 1 \}$
- Output space : $\mathcal{Y} := \{1, \ldots, C\}$.
- Perturbation Space : $\mathcal{B}_{\nu} := \{ \boldsymbol{\delta} \in \mathbb{R}^{d}, \|\boldsymbol{\delta}\|_{2} \leq \nu \}$
- Data Distribution : $\mathcal{D}_{\mathcal{Z}} := \mathcal{D}_{\mathcal{X}} \times \mathcal{D}_{\mathcal{Y}}$ on $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$.
- Training sample (i.i.d): $S_T := {\mathbf{z}_i}_{i=1}^m = {(\mathbf{x}_i, \mathbf{y}_i)}_{i=1}^m$
- ▶ Hypothesis class : $\mathcal{H} : \mathcal{X} \to \mathbb{R}^{C}$ with embedded norm $\|\cdot\|_{\mathcal{H}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation - Representation-Linear Hypothesis

▶ We only consider *representation-linear hypothesis classes*.

$$\mathcal{H} := \left\{ h_{\mathbf{A},\mathbf{W}}(\mathbf{x}) := \mathbf{A} \Phi_{\mathbf{W}}(\mathbf{x}), \ \forall \ (\mathbf{A},\mathbf{W}) \in \mathcal{A} \times \mathcal{W} \right\}.$$

Here, $\Phi_{\mathbf{W}}$ is a representation map and \mathbf{A} is a classification weight.

Notation - Representation-Linear Hypothesis

We only consider representation-linear hypothesis classes.

$$\mathcal{H} := \{h_{\mathbf{A},\mathbf{W}}(\mathbf{x}) := \mathbf{A}\Phi_{\mathbf{W}}(\mathbf{x}), \ \forall \ (\mathbf{A},\mathbf{W}) \in \mathcal{A} \times \mathcal{W}\}.$$

Here, $\Phi_{\mathbf{W}}$ is a representation map and \mathbf{A} is a classification weight.

• Example : A feedforward neural networks with K hidden layers has the representation map $\Phi^{[K]}$,

$$\Phi^{[K]}(\mathbf{x}) := \sigma \left(\mathbf{W}^{K} \sigma \left(\mathbf{W}^{K-1} \cdots \sigma \left(\mathbf{W}^{1} \mathbf{x} + \mathbf{b}^{1} \right) \cdots + \mathbf{b}^{K-1} \right) + \mathbf{b}^{K} \right).$$

Sensitivity

▶ Global Lipschitzness : A constant L_{inp}, for all $x, \tilde{x} \in \mathcal{X}$ and $h \in \mathcal{H}$, we have that

$$\left\|h(\tilde{\mathbf{x}}) - h(\mathbf{x})\right\|_2 \leq \mathsf{L}_{\mathrm{inp}} \left\|\tilde{\mathbf{x}} - \mathbf{x}\right\|_2$$

• Local Lipschitzness : A radius function r_{inp} and a Lipschitz scale function l_{inp} such that,

$$\|\tilde{\mathbf{x}} - \mathbf{x}\|_{2} \leq r_{\mathrm{inp}}(\mathbf{x}) \implies \|h(\tilde{\mathbf{x}}) - h(\mathbf{x})\|_{2} \leq l_{\mathrm{inp}}(\mathbf{x}) \|\tilde{\mathbf{x}} - \mathbf{x}\|_{2}.$$

- If there is a structural property at a predictor output $h(\mathbf{x})$, within what radius can we gaurantee that $h(\tilde{\mathbf{x}})$ retains the property
- A structural property for neural networks activation states of neurons in each layer.

Motivation - Feedforward layers

For feedforward networks, each layer is a feed-forward map $\Phi^{(k)}(\mathbf{t}) := \sigma(\mathbf{W}^k \mathbf{t})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation - Feedforward layers

For feedforward networks, each layer is a feed-forward map $\Phi^{(k)}(\mathbf{t}) := \sigma(\mathbf{W}^k \mathbf{t})$.

ReLu induces an **activation pattern** in the output of each layer $\Phi^{(k)}(\mathbf{t})$. We denote by $\mathcal{J}^{k}(\mathbf{t})$ and $\mathcal{I}^{(k)}$ the true support and co-support of the layer output.

Figure: Illustration of the sets $\mathcal{J}^k(\mathbf{t})$, $\mathcal{I}^k(\mathbf{t})$, as well as J^k and J^k , for a given intermediate input $\sigma(\mathbf{W}^k \mathbf{t} + \mathbf{b}^k)$. Colored squares represent non-zero elements, ordered here without loss of generality.

Motivation : Effect of ReLu

Figure: Distribution of neuron activity (size of $\mathcal{J}^k(\mathbf{t})$) in each layer k of a network trained on MNIST. At each layer only 40 percent of the neurons are activated.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Motivation - Effect of ReLu

Activation states are the result of interaction between rows of \mathbf{W}^1 and input $\mathbf{x}.$

Motivation - Effect of ReLu

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For bounded perturbations, the strongly inactive rows remain inactive.

Sparse Local Lipschitz (SLL)

A representation map Φ is *SLL w.r.t inputs* if at **each** input $\mathbf{x} \in \mathcal{X}$ and sparsity level $s \in \mathfrak{S}$, there exists¹

- A stable inactive index set $I(\mathbf{x}, s)$ of size s for the representation $\Phi(\mathbf{x})$
- A sparse local radius function $r_{inp} : \mathcal{X} \times \mathfrak{S} \to \mathbb{R}^{\geq 0}$
- A sparse local Lipschitz scale function $l_{inp} : \mathcal{X} \times \mathfrak{S} \to \mathbb{R}^{\geq 0}$

such that for any perturbation δ ,

$$\|\boldsymbol{\delta}\|_{2} \leq \mathbf{r}_{\mathrm{inp}}(\mathbf{x}, s) \implies \begin{cases} \|\Phi(\mathbf{x} + \boldsymbol{\delta}) - \Phi(\mathbf{x})\|_{2} \leq l_{\mathrm{inp}}(\mathbf{x}, s) \|\boldsymbol{\delta}\|_{2} \\ l(\mathbf{x}, s) \text{ is inactive for } \Phi(\mathbf{x} + \boldsymbol{\delta}). \end{cases}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

¹Thus we necessarily only talk of $s \leq p - \|\Phi(\mathbf{x})\|_0$

Sparse Local Lipschitz (SLL)

A representation map Φ is *SLL w.r.t inputs* if at **each** input $\mathbf{x} \in \mathcal{X}$ and sparsity level $s \in \mathfrak{S}$, there exists¹

- A stable inactive index set $I(\mathbf{x}, s)$ of size s for the representation $\Phi(\mathbf{x})$
- A sparse local radius function $r_{inp} : \mathcal{X} \times \mathfrak{S} \to \mathbb{R}^{\geq 0}$
- A sparse local Lipschitz scale function $I_{inp} : \mathcal{X} \times \mathfrak{S} \to \mathbb{R}^{\geq 0}$

such that for any perturbation δ ,

$$\|\boldsymbol{\delta}\|_{2} \leq r_{\mathrm{inp}}(\mathbf{x}, \boldsymbol{s}) \implies \begin{cases} \|\Phi(\mathbf{x} + \boldsymbol{\delta}) - \Phi(\mathbf{x})\|_{2} \leq I_{\mathrm{inp}}(\mathbf{x}, \boldsymbol{s}) \|\boldsymbol{\delta}\|_{2} \\ I(\mathbf{x}, \boldsymbol{s}) \text{ is inactive for } \Phi(\mathbf{x} + \boldsymbol{\delta}). \end{cases}$$

 $\mathsf{SLL} \implies \mathsf{local}$ sensitivity to perturbation + invariance in representation sparsity pattern

¹Thus we necessarily only talk of $s \leq p - \|\Phi(\mathbf{x})\|_0$

Feedforward Maps are SLL

Lemma

Any feedforward map, $\Phi(\mathbf{x}) := \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is SLL w.r.t input.

$$\begin{split} I(\mathbf{x}, \boldsymbol{s}) &:= \operatornamewithlimits{argmax}_{\substack{I \subseteq \mathcal{I}(\mathbf{x}), \\ |I| = s}} \min_{i \in I} \frac{|\mathbf{w}_i \mathbf{x} + \mathbf{b}_i|}{\|\mathbf{w}_i\|_2}, \\ r_{\mathrm{inp}}(\mathbf{x}, \boldsymbol{s}) &:= \min_{i \in I} \frac{|\mathbf{w}_i \mathbf{x} + \mathbf{b}_i|}{\|\mathbf{w}_i\|_2}, \\ I_{\mathrm{inp}}(\mathbf{x}, \boldsymbol{s}) &:= \|\mathbf{W}[J, :]\|_2. \end{split}$$

 $J = (I(\mathbf{x}, s))^{c}$ is the complement index set.

Note : The choice of index sets *I* (and hence the local Lipschitz scale) varies across inputs.

Sparse Local Radius at Layer k

For the feedforward map $\Phi^{(k)}$, the strongly inactive index set $I^k \subset \mathcal{I}^k(\mathbf{t})$ is uniquely identified at layer input \mathbf{t} and sparsity level $\mathbf{s}^{(k)}$.

To compute I^k we sort the normalized pre-activation vector $\mathbf{q}^k := \begin{bmatrix} \mathbf{w}_i^k \mathbf{t} + \mathbf{b}_i^k \\ \|\mathbf{w}_i^k\|_2 \end{bmatrix}_{i=1}^{d^k}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sparse Local Radius at Layer k

For the feedforward map $\Phi^{(k)}$, the strongly inactive index set $l^k \subset \mathcal{I}^k(\mathbf{t})$ is uniquely identified at layer input \mathbf{t} and sparsity level $\mathbf{s}^{(k)}$.

To compute I^k we sort the normalized pre-activation vector $\mathbf{q}^k := \left[\frac{\mathbf{w}_i^k \mathbf{t} + \mathbf{b}_i^k}{\|\mathbf{w}_i^k\|_2}\right]_{i=1}^{d^k}$.

Figure: Illustration of the radius $r_{inp}^{(k)}(\mathbf{t}, \mathbf{s}^{(k)})$ for the intermediate feedforward representation $\Phi^{(k)}$, given the (sorted) values of the normalized pre-activations.

Impact of SLL analysis

Here the index set l^1 is the strongly inactive index set. The stability of the set l^1 impacts the representation computed in subsequent layers.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Motivation - Effect of ReLu

Let $J^1 = (l^1)^C$. For perturbations within the sparse local radius $r_{inp}(\mathbf{x}, s)$, the representation computed is equivalent to a reduced network without l^1 rows in \mathbf{W}^1 and l^1 columns in \mathbf{W}^2 .

Hence the sensitivity in first layers propagates as $\|\mathbf{W}^{1}[J^{1}, :]\|_{2}$

Motivation - Effect of ReLu

For the second layer there is sparsity pattern in the outputs as well as a sparsity pattern in the original layer input. We can propagate the same analysis.

Composition of SLL maps is SLL

Consider K intermediate layer representation maps $\Phi^{(k)}$ for $1 \le k \le K$, which are then composed to obtain $\Phi^{[K]}$,

$$\Phi^{[\kappa]}(\mathbf{x}) := \Phi^{(\kappa)} \circ \Phi^{(\kappa-1)} \circ \cdots \circ \Phi^{(1)}(\mathbf{x}).$$

Lemma

Assume each $\Phi^{(k)}$ is SLL w.r.t. inputs with $r_{inp}^{(k)}$ and $l_{inp}^{(k)}$. The composed maps (upto layer k) $\Phi^{[k]}$ are also SLL with radius $r_{inp}^{[k]}$ and Lipschitz scale $l_{inp}^{[k]}$ given by²

For any perturbation δ within $r_{inp}^{[k]}(\mathbf{x}, \mathbf{s}^{[k]})$, index sets l^1, l^2, \ldots, l^k remain inactive.

²Here (s^0, s^1, \ldots, s^K) are sparsity levels for each intermediate map, $\mathbf{s}^{(k)} := (s^{k-1}, s^k)$ is the layer-wise input-output sparsity levels and $\mathbf{s}^{[k]} := (s^0, s^k)$ is the cumulative input-output levels.

Reduced Dimensionality of SLL predictors

• The representation $\Phi^{[K]}$ computed by K feedforward layers is SLL with radius $r_{\text{inp}}^{[K]}$ and local Lipschitz scale $l_{\text{inp}}^{[K]}$.

Reduced Dimensionality of SLL predictors

- ▶ The representation $\Phi^{[K]}$ computed by *K* feedforward layers is SLL with radius $r_{inp}^{[K]}$ and local Lipschitz scale $l_{inp}^{[K]}$.
- \blacktriangleright Feedforward neural networks exhibit the reduced dimensionality. For for all perturbations \tilde{x} within the local radius,

$$\begin{split} h(\tilde{\mathbf{x}}) &= \mathbf{A}\sigma \left(\mathbf{W}^{K} \, \sigma \left(\mathbf{W}^{K-1} \cdots \sigma \left(\mathbf{W}^{1} \; \tilde{\mathbf{x}} + \mathbf{b}^{1} \right) \cdots + \mathbf{b}^{K-1} \right) + \mathbf{b}^{K} \right) \\ &= \mathbf{A}_{\mathrm{red}}\sigma \left(\mathbf{W}_{\mathrm{red}}^{K} \, \sigma \left(\mathbf{W}_{\mathrm{red}}^{K-1} \cdots \sigma \left(\mathbf{W}_{\mathrm{red}}^{1} \; \tilde{\mathbf{x}} + \mathbf{b}_{\mathrm{red}}^{1} \right) \cdots + \mathbf{b}_{\mathrm{red}}^{K-1} \right) + \mathbf{b}_{\mathrm{red}}^{K} \right) \\ &=: h_{\mathrm{red}}(\tilde{\mathbf{x}}) \end{split}$$

where $\mathbf{W}_{\rm red}^k:=\mathbf{W}^k[\mathit{J}^k,\mathit{J}^{k-1}]\in\mathbb{R}^{(\mathit{d}^k-\mathit{s}^k)\times(\mathit{d}^{k-1}-\mathit{s}^{k-1})}$

Reduced Dimensionality of SLL predictors

- ▶ The representation $\Phi^{[K]}$ computed by *K* feedforward layers is SLL with radius $r_{inp}^{[K]}$ and local Lipschitz scale $l_{inp}^{[K]}$.
- \blacktriangleright Feedforward neural networks exhibit the reduced dimensionality. For for all perturbations \tilde{x} within the local radius,

$$\begin{split} h(\tilde{\mathbf{x}}) &= \mathbf{A}\sigma \left(\mathbf{W}^{K} \, \sigma \left(\mathbf{W}^{K-1} \cdots \sigma \left(\mathbf{W}^{1} \; \tilde{\mathbf{x}} + \mathbf{b}^{1} \right) \cdots + \mathbf{b}^{K-1} \right) + \mathbf{b}^{K} \right) \\ &= \mathbf{A}_{\mathrm{red}} \sigma \left(\mathbf{W}^{K}_{\mathrm{red}} \; \sigma \left(\mathbf{W}^{K-1}_{\mathrm{red}} \cdots \sigma \left(\mathbf{W}^{1}_{\mathrm{red}} \; \tilde{\mathbf{x}} + \mathbf{b}^{1}_{\mathrm{red}} \right) \cdots + \mathbf{b}^{K-1}_{\mathrm{red}} \right) + \mathbf{b}^{K}_{\mathrm{red}} \right) \\ &=: h_{\mathrm{red}}(\tilde{\mathbf{x}}) \end{split}$$

where $\mathbf{W}_{\rm red}^k:=\mathbf{W}^k[J^k,J^{k-1}]\in\mathbb{R}^{(d^k-s^k)\times(d^{k-1}-s^{k-1})}$

- A naive estimate of the global Lipschitz constant $\prod_{k=1}^{\kappa+1} \|\mathbf{W}^k\|_2$.
- ▶ Reduced local dimensionality \implies it is inefficient to directly compute the Lipschitz constant of the full original network. The local sensitivity scales with depth as $\prod_{k=1}^{K+1} \|\mathbf{W}_{red}^k\|_2$ i.e. $\prod_{k=1}^{K+1} \|\mathbf{W}^k[J^k, J^{k-1}]\|_2$.

Certified Robustness for SLL predictors

Theorem

Let $h(\mathbf{x}) := \mathbf{A}\Phi(\mathbf{x})$ be a predictor such that the representation map Φ is SLL with radius function $r_{\rm inp}$ and Lipschitz scale function $l_{\rm inp}$. The predicted label $\hat{y}(\mathbf{x})$ at input \mathbf{x} remains unchanged if an adversarial corruption is within the certified radius $r_{\rm cert}(\mathbf{x}, \mathbf{s})$,

$$r_{SLL}(\mathbf{x}, \mathbf{s}) := \min \left\{ r_{inp}(\mathbf{x}, \mathbf{s}), \frac{\rho(\mathbf{x})}{2 \|\mathbf{A}\|_2 \ l_{inp}(\mathbf{x}, \mathbf{s})} \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here, $\rho(\mathbf{x})$ is the classification margin.

Certified Robustness for SLL predictors

Theorem

Let $h(\mathbf{x}) := \mathbf{A}\Phi(\mathbf{x})$ be a predictor such that the representation map Φ is SLL with radius function $r_{\rm inp}$ and Lipschitz scale function $l_{\rm inp}$. The predicted label $\hat{y}(\mathbf{x})$ at input \mathbf{x} remains unchanged if an adversarial corruption is within the certified radius $r_{\rm cert}(\mathbf{x}, \mathbf{s})$,

$$r_{SLL}(\mathbf{x}, \mathbf{s}) := \min \left\{ r_{inp}(\mathbf{x}, \mathbf{s}), \frac{\rho(\mathbf{x})}{2 \|\mathbf{A}\|_2 I_{inp}(\mathbf{x}, \mathbf{s})} \right\}.$$

Here, $\rho(\mathbf{x})$ is the classification margin.

- For depth-(K+1) feedforward networks, the local radius function is r^[K]_{inp} and the local Lipschitz scale function is l^[K]_{inp}.
- Local /Global Lipschitz analysis correspond to s = 0.
- We can optimize over sparsity levels to get the best certified radius.

True certified radius

 $\hat{y}(x) :=$ Label predicted by h on input \mathbf{x} .

$$\begin{split} r_{\text{cert}}(\mathbf{x}) &:= \min_{\boldsymbol{\delta}} \|\boldsymbol{\delta}\|_2\\ \text{s.t.} \hat{y}(\mathbf{x} + \boldsymbol{\delta}) \neq \hat{y}(\mathbf{x}) \end{split}$$

For all perturbations within $r_{\text{cert}}(\mathbf{x})$, the label remains unchanged.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For any adversarial attack, pick the example with least energy.

$$egin{aligned} & r_{\mathsf{adv}}(\mathbf{x}) := \min_{\mathsf{adv} \ \mathsf{attacks}} \left\| oldsymbol{\delta}
ight\|_2 \ & s.t. \hat{y}(\mathbf{x} + oldsymbol{\delta})
eq \hat{y}(\mathbf{x}) \end{aligned}$$

Upper bound since PGD doesn't provably converge to optimal perturbation.

Global Lipschitz certificate

Let $L_{\rm inp}$ be the global Lipschitz constant. For any perturbation,

$$\|h(\mathbf{x} + \boldsymbol{\delta}) - h(\mathbf{x})\|_2 \le \mathsf{L}_{\mathrm{inp}} \|\boldsymbol{\delta}\|_2$$

The global certified radius

$$r_{\text{global}}(\mathbf{x}) := rac{
ho(\mathbf{x})}{\mathsf{L}_{ ext{inp}}},$$

ensures perturbations don't cross decision boundaries.

Local Lipschitz certificate

If Φ is local Lipschitz,

$$\begin{split} \|\boldsymbol{\delta}\|_2 &\leq r_{\mathrm{inp}}(\mathbf{x}) \\ \implies \|\boldsymbol{h}(\mathbf{x} + \boldsymbol{\delta}) - \boldsymbol{h}(\mathbf{x})\|_2 &\leq \|\mathbf{A}\|_2 \, l_{\mathrm{inp}}(\mathbf{x}) \end{split}$$

The local certified radius is

$$r_{\mathsf{local}}(\mathbf{x}) := \min\left\{r_{\mathrm{inp}}(\mathbf{x}), \frac{\rho(\mathbf{x})}{2 \|\mathbf{A}\|_2 \, l_{\mathrm{inp}}(\mathbf{x})}\right\}$$

ensures perturbations don't exceed local Lipschitz radius or margin in output space.

Sparse Local Lipschitz Certificate

The sparse certificate is,

 $r_{SLL}(\mathbf{x}, \mathbf{s})$ $:= \min \left\{ r_{inp}(\mathbf{x}, \mathbf{s}), \frac{\rho(\mathbf{x})}{2 \|\mathbf{A}\|_2 l_{inp}(\mathbf{x}, \mathbf{s})} \right\}.$

Equivalent to local Lipschitz analysis for s = 0.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Sparse Local Lipschitz Certificate

Optimize over sparsity levels for best certificate,

$$\begin{split} r_{sparse}(\mathbf{x}) & := \max_{s} r_{SLL}(\mathbf{x}, s) \\ &= \max_{s} \min \left\{ r_{inp}(\mathbf{x}, s), \ \frac{\rho(\mathbf{x})}{2 \|\mathbf{A}\|_2 \ l_{inp}(\mathbf{x}, s)} \right\} \end{split}$$

At each \mathbf{x} , the optimal sparsity level s^* gives a specific reduced network.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reduced Dimensionality

(b) Histogram of reduced widths at layer 2

Figure: For an off-the-shelf trained network h, (a) and (b) represent the distribution of widths of the particular reduced network $h_{\rm red}$ at each input x. The reduced widths at each layer correspond to the choice of **optimal sparsity level**.

Reduced Lipschitz constant

Figure: Histogram of optimal sparse local Lipschitz scale across inputs. At each input, the size of the reduced network corresponds to $\mathbf{s}^*(\mathbf{x})$. The red line marks the naive estimate of global Lipschitz constant.

Certified Robustness for Feed-forward Neural Networks

We plot the certified accuracy of a trained predictor using,

- ▶ Naive certificate with global Lipschitz constant = $\prod_{k=1}^{K+1} \|\mathbf{W}^k\|_2$.
- SLL certificate with local Lipschitz constant = $\prod_{k=1}^{K+1} \|\mathbf{W}^k[J^k, J^{k-1}]\|_2$.
- ▶ Heuristic upper bound from common adversarial attacks.

Figure: Security curves for feed-forward neural networks on MNIST.

Sparse Local Lipschitz w.r.t Parameters and Inputs

Analysis can be extended to perturbations to both weights and inputs.

- ロ ト - 4 回 ト - 4 □

- Sparse local radius again quantifies stability of inactive index sets.
- \blacktriangleright Similar reduced dimensionality effect for a perturbed input \tilde{x} and perturbed weight \hat{W} within local radius.

Robust Generalization Bound for Feedforward Neural Networks

Theorem

With probability at least $(1 - \alpha)$ over the choice of i.i.d training sample S_T and unlabeled data S_U , for any multi-layered neural network predictor $h \in \mathcal{H}^{K+1}$ with parameters $\{\mathbf{W}^k\}$ the robust stochastic risk is bounded as,

$$\begin{split} & \mathcal{R}_{\rm rob}\left(h\right) - \hat{\mathcal{R}}_{\rm rob}\left(h\right) \leq \\ & \tilde{\mathcal{O}}\left(b\sqrt{\frac{\ln\left(\mathcal{N}\left(\frac{1}{m(\mathcal{K}+1)}, \mathcal{H}^{\mathcal{K}+1}\right)\right) + \ln\left(\frac{2}{\alpha}\right)}{2m}} \\ & + \frac{\mathsf{L}_{\rm loss}(1+\nu)}{m}\prod_{k=1}^{\mathcal{K}+1} \left\|\mathbf{W}^k\right\|_{2,\infty}\sqrt{1 + \mu_{s^k,s^{k-1}}(\mathbf{W}^k)}\right) \end{split}$$

Here, $\mathbf{s} = (s^1, \ldots, s^K)$ is an optimal sparsity level chosen based on S_T and S_U . $\mu_{s^k, s^{k-1}}(\mathbf{W}^k)$ is a reduced babel function and $\|\mathbf{W}\|_{2,\infty}$ is the maximal ℓ_2 norm of a row in \mathbf{W} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for attending my talk :)

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Certified Robustness for Feed-forward Neural Networks

Corollary

Consider a trained depth-K + 1 feed-forward neural network h. Let $\mathbf{s} = (\mathbf{s}^1, \dots, \mathbf{s}^K)$ be a choice of sparsity levels at each layer Let $\mathbf{v}^{(k)} := (\mathbf{s}^{k-1}, \mathbf{s}^k)$ be the corresponding layer-wise input-output sparsity levels.

The predicted label remains unchanged, whenever $\| \boldsymbol{\delta} \|_2 \leq r_{\mathrm{cert}}(\mathbf{x}, \mathbf{s})$, where

$$r_{\text{cert}}(\mathbf{x}, \mathbf{s}) := \min\left\{\min_{1 \le k \le \kappa} \frac{r_{\inf}^{(k)}(\Phi^{[k-1]}(\mathbf{x}), \mathbf{v}^{(k)})}{\prod_{n=1}^{k} \left\| \mathcal{P}_{J^{n}, J^{n-1}}(\mathbf{W}^{n}) \right\|_{2}}, \frac{\rho(\mathbf{x})}{2 \left\| \mathbf{A} \right\|_{2} \prod_{k=1}^{\kappa} \left\| \mathcal{P}_{J^{k}, J^{k-1}}(\mathbf{W}^{k}) \right\|_{2}} \right\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here, $r_{inp}^{(k)}$ is the local radius for the feedforward map at layer k. and $\mathcal{P}_{J^k, J^{k-1}}(\mathbf{W}^k)$ is the activated weight at layer k.

Reduced Widths for regularized networks

(b) Histogram of reduced widths at layer 2

Figure: For an original regularized trained network h, this plot is a histrogram of the size of a particular reduced network h_{red} at each input x. The reduced widths at each layer correspond to the choice of optimal sparsity level.

Reduced Lipschitz constant for regularized networks

Figure: Histogram of optimal sparse local Lipschitz scale across inputs. At each input, the size of the reduced network corresponds to $s^*(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Reduced Babel Function

Definition

For any matrix $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$, we define the reduced babel function at row sparsity level $s_1 \in \{0, \ldots, d_1 - 1\}$ and column sparsity level $s_2 \in \{0, \ldots, d_2 - 1\}$ as,

$$\mu_{s_1,s_2}(\mathbf{W}) := \max_{\substack{J_1 \subset [d_1], \\ |J_1| = d_1 - s_1}} \max_{j \in J_1} \left[\sum_{\substack{I_2 \subseteq [d_2], \\ i \neq j}} \max_{\substack{J_2 \subseteq [d_2] \\ |J_2| = d_2 - s_2}} \frac{|\mathcal{P}_{J_2}(\mathbf{w}_i) \mathcal{P}_{J_2}(\mathbf{w}_j)^{\mathcal{T}}|}{\|\mathcal{P}_{J_2}(\mathbf{w}_i)\|_2 \|\mathcal{P}_{J_2}(\mathbf{w}_j)\|_2} \right],$$

the maximum cumulative mutual coherence between a reference row in J_1 of size $(d_1 - s_1)$ and any other row in J_1 , each restricted to any subset of columns J_2 of size³ $(d_2 - s_2)$.

Lemma

For any matrix $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$, the operator norm of any non-trivial⁴ sub-matrix indexed by sets $J_1 \subseteq [d_1]$ of size $(d_1 - s_1)$ and $J_2 \subseteq [d_2]$ of size $(d_2 - s_2)$ can be bounded as

$$\|\mathcal{P}_{J_1,J_2}(\mathbf{W})\|_2 \leq \sqrt{1+\mu_{s_1,s_2}(\mathbf{W})} \cdot \|\mathbf{W}\|_{2,\infty}$$

³When $s_1 = d_1 - 1$, $|J_1| = 1$, we simply define $\mu_{(s_1, s_2)}(\mathbf{W}) := 0$. ⁴That is $0 \le s_1 \le d_1 - 1$ and $0 \le s_2 \le d_2 - 1$.

うしん 言 《山》《四》《曰》《曰》 (日)