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Two central questions of Robustness

» Certified Robustness : What is the minimal size of an adversarial
perturbation for a predictor h at input x.

> Robust Generalization : When will a predictor h learnt on a training data
St generalize to corrupted unseen data ?



Our Contribution

» Sensitivity of functions under structural invariance.

» Understanding robust properties of neural networks.



Preliminary Notation

> Input space : X := {x € R’ |x||, < 1}

» Output space : Y :={1,..., C}.

v

Perturbation Space : B, := {§ € R’ ||4]|, < v}
» Data Distribution : Dz := Dy X Dy on Z := X X ).

> Training sample (i.i.d): St :={z;}Z1 = {(xi, ¥i) } 121

\4

Hypothesis class : H : X — R with embedded norm ||-|.,,.



Notation - Representation-Linear Hypothesis

» We only consider representation-linear hypothesis classes.
H:={haw(x):=Adw(x), V (A, W) e AxW}.

Here, &w is a representation map and A is a classification weight.



Notation - Representation-Linear Hypothesis

» We only consider representation-linear hypothesis classes.
H:={haw(x):=Adw(x), V (A, W) e AxW}.

Here, &w is a representation map and A is a classification weight.

» Example : A feedforward neural networks with K hidden layers has the
representation map @,

oM (x) = o (WKO' (WK’l o (W4 bl) o 4 b’“) + bK) .



Sensitivity

> Global Lipschitzness : A constant Linp, for all x,Xx € X and h € H, we
have that

[[h(x) = h(x)[l5 < Linp [I% = x|l

> Local Lipschitzness : A radius function rinp and a Lipschitz scale function
linp such that,

% =%, < rnp(x) = [|A(X) = h(x)|l; < hnp(x) [IX = x|l -

> If there is a structural property at a predictor output h(x), within what
radius can we gaurantee that h(X) retains the property

> A structural property for neural networks - activation states of neurons in
each layer.



Motivation - Feedforward layers
For feedforward networks, each layer is a feed-forward map ®¥(t) := o(W*t).

ReLu(Wx) w! x

= RelLu




Motivation - Feedforward layers
For feedforward networks, each layer is a feed-forward map ®¥(t) := o(W*t).

ReLu(Wx) w! x

= RelLu

ReLu induces an activation pattern in the output of each layer ® (t). We
denote by J*(t) and Z™ the true support and co-support of the layer output.

Jk II.‘
I
-

Tk(t) TH(t)

Figure: lllustration of the sets ]k(t), Zk(t), as well as /¥ and J, for a given
intermediate input o(W*t 4+ b¥). Colored squares represent non-zero elements,
ordered here without loss of generality.



Motivation : Effect of RelLu
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Figure: Distribution of neuron activity (size of JX(t)) in each layer k of a network
trained on MNIST. At each layer only 40 percent of the neurons are activated.



Motivation - Effect of RelLu

ReLu(W'x) w! x

Activerows []

= Relu

e -

Activation states are the result of interaction between rows of W' and input x.



Motivation - Effect of RelLu

1
Strongly active rows Relu (W x) w!

= Relu

Weakly inactive rows

]
Weakly active rows
[

Strongly inactive rows -

For bounded perturbations, the strongly inactive rows remain inactive.



Sparse Local Lipschitz (SLL)

A representation map ® is SLL w.r.t inputs if at each input x € X’ and sparsity
level s € &, there exists!

» A stable inactive index set I(x, s) of size s for the representation ®(x)
> A sparse local radius function finp : X X & — RZ°
> A sparse local Lipschitz scale function fyp : X x & — R=°

such that for any perturbation 4,

[@(x+68) = D)y < hnp(x;9) (18],

) < fin s — -
191l < rinp (3 <) { I(x, s) is inactive for ®(x + 9).

!Thus we necessarily only talk of s < p — ||®(x)]|,



Sparse Local Lipschitz (SLL)

A representation map ® is SLL w.r.t inputs if at each input x € X’ and sparsity
level s € &, there exists!

» A stable inactive index set I(x, s) of size s for the representation ®(x)
> A sparse local radius function finp : X X & — RZ°
> A sparse local Lipschitz scale function fyp : X x & — R=°

such that for any perturbation 4,

[@(x+68) = D)y < hnp(x;9) (18],

) < fin s — -
191l < rinp (3 <) { I(x, s) is inactive for ®(x + 9).

SLL = local sensitivity to perturbation -+ invariance in representation
sparsity pattern

!Thus we necessarily only talk of s < p — ||®(x)]|,



Feedforward Maps are SLL

Lemma
Any feedforward map, ®(x) := c(Wx + b) is SLL w.r.t input.

. |wix + bl
I(x,s) := argmax min —————,
ICZ(x), '€/ llwill,
|l|=s
. |wx + bl
Finp (X, §) := min ————
oGS =0 T,

Iinp(X7 5) = HW[J7 :} ||2 :

J= (I(x,5s)) is the complement index set.

Note : The choice of index sets / (and hence the local Lipschitz scale) varies
across inputs.



Sparse Local Radius at Layer k

For the feedforward map &, the strongly inactive index set /¥ C TH(t) is

uniquely identified at layer input t and sparsity level s¥.
k

wf‘t+b,.k:| I
Iwill, iy

To compute /¥ we sort the normalized pre-activation vector g* := [



Sparse Local Radius at Layer k

For the feedforward map &, the strongly inactive index set /¥ C TH(t) is

uniquely identified at layer input t and sparsity level s¥.
k

wf‘t+b,.k:| I
Iwill, iy

To compute /¥ we sort the normalized pre-activation vector g* := [

T*(t)

wff't + bk Sk

rk(t)

i
Figure: lllustration of the radius ri(él)(t,s(k)) for the intermediate feedforward

representation ®(K), given the (sorted) values of the normalized pre-activations.



Impact of SLL analysis

Second Layer First Layer
ReLu (W, ReLu(W,x))
W, ReLu(W,x) ReLu(W,;x) w, x
g =Relu
I T
— =Relu A
— 0 indexset ]!

Here the index set I* is the strongly inactive index set.
The stability of the set /' impacts the representation computed in subsequent
layers.



Motivation - Effect of RelLu

Let J* = (/)€. For perturbations within the sparse local radius finp(x, s), the
representation computed is equivalent to a reduced network without /* rows in
W' and I* columns in W2,

Second Layer First Layer

Relu (Wyl: ,J'T Relu(W,[J", :1x)) W2l 7' ReLuWl/'] ReLU(W0"] Wi, x

E 0 T

=Relu

Hence the sensitivity in first layers propagates as HWI[Jl, ]”2)



Motivation - Effect of RelLu

Second Layer First Layer

. 1 1 .
Relu (Wyl: ,J'] Relu(W,[J", :1x)) W2 ,J1 ReLuWel/')\  ReLu(Wxu'] Wi 1] x

] -

For the second layer there is sparsity pattern in the outputs as well as a sparsity
pattern in the original layer input. We can propagate the same analysis.



Composition of SLL maps is SLL

Consider K intermediate layer representation maps ®® for 1 < k < K, which
are then composed to obtain oM

oM (x) := M oKD . oM (x).

Lemma
Assume each @) is SLL w.r.t. inputs with rfﬁz) and /i(:i).
The composed maps (upto layer k) ® are also SLL with radius ri[f]]p and
Lipschitz scale li[ﬁ]p given by?
(n) ( [n—1] <n>)
ro (@ X), S
A4 (x s[k]) = min — >
inp ’ 1<n<k l'[n—l] (X, S[n—l])
inp
K
k K| n n— n
li[n]p (x, sl ]) = H li(nl) ((I>[ 1](x), s >).
n=1
For any perturbation & within ¥ (x, s¥ , index sets I', I, ..., I remain
yp mp ) ) )
inactive.
2Here (so, st sK) are sparsity levels for each intermediate map, s = (sk_l, sk) is the

layer-wise input-output sparsity levels and s = (507 sk) is the cumulativerinput-output levels.



Reduced Dimensionality of SLL predictors

> The representation ® computed by K feedforward layers is SLL with

radius ri[pr and local Lipschitz scale li[r}f]p.



Reduced Dimensionality of SLL predictors

> The representation ® computed by K feedforward layers is SLL with

radius ri[pr and local Lipschitz scale li[r}f]p.

» Feedforward neural networks exhibit the reduced dimensionality. For for all
perturbations X within the local radius,

h(x) = Ao (WKU (W’H---o—(w1 >~c+b1)-~+bK’1) +bK)
= Ao (Wﬁd o (wggl coo (Wihg %+ bly) -+ b,i;‘) n bﬁd)
=: hred(X)

k*l)

where Wk, := WK =1 ¢ R x(d ! =s



Reduced Dimensionality of SLL predictors

> The representation ® computed by K feedforward layers is SLL with

radius rl[pr and local Lipschitz scale li[f]p

» Feedforward neural networks exhibit the reduced dimensionality. For for all
perturbations X within the local radius,

h(x) = Ao (WKU (W’H---a(w1 5<+b1)~.+bK*1) +bK)
= Ao (Wﬁd o (Wﬁ;‘ coo (Wihg %+ bly) -+ b,i;‘) + bﬁd)
=: hred(X)

k*l)

where Wk, := WK =1 ¢ R x (@1 s
> A naive estimate of the global Lipschitz constant HK'H HW"H2

> Reduced local dimensionality = it is inefficient to directly compute the
Lipschitz constant of the full original network. The local sensitivity scales
with depth as [T\ [|[Wkyl|, i.e. [T [[WHJ S,



Certified Robustness for SLL predictors

Theorem
Let h(x) := A®(x) be a predictor such that the representation map ® is SLL
with radius function rinp and Lipschitz scale function lyp.

The predicted label y(x) at input x remains unchanged if an adversarial
corruption is within the certified radius reert (X, s),

rsi(x, ) := min < rinp (X, s UL S —
s11(x,) : {mp( '9); 2[1A], linp(x?s)}'

Here, p(x) is the classification margin.



Certified Robustness for SLL predictors

Theorem

Let h(x) := A®(x) be a predictor such that the representation map ® is SLL
with radius function rinp and Lipschitz scale function lyp.

The predicted label y(x) at input x remains unchanged if an adversarial
corruption is within the certified radius reert (X, s),

rsi(x, ) := min < rinp (X, s UL S —
s11(x,) : {mp( '9); 2[1A], linp(x?s)}'

Here, p(x) is the classification margin.

> For depth-(K + 1) feedforward networks, the local radius function is AN

inp
and the local Lipschitz scale function is /i[rllqp.

» Local /Global Lipschitz analysis correspond to s = 0.

» We can optimize over sparsity levels to get the best certified radius.



True certified radius

y(x) := Label predicted by h on
input x.

Fere () 2= min |8

sti(x +8) # ¥(x)
For all

perturbations within
reert(x), the label remains un-
changed.

DA



Adversarial upper bound

For any adversarial attack, pick
the example with least energy.

radv(x) = advr?tltgcks “6”2
st.y(x+0) # y(x)
Upper bound since PGD doesn’t

provably converge to optimal
perturbation.




Global Lipschitz certificate

Let Linp be the global Lipschitz
constant. For any perturbation,

[[h(x +68) — h(x)l[; < Linp [|8]] -
The global certified radius

X
rglobal(x) = Il.i( )7
inp

ensures  perturbations don't
cross decision boundaries.

=] F = = £ DA



Local Lipschitz certificate

If ® is local Lipschitz,
161l; < rinp(x)
= [[h(x+8) — h(x)ll; < Al hop(x).

The local certified radius is

o p(x)
rlocal(x) = min {I’mp(x)y m}

ensures perturbations don't ex-
ceed local Lipschitz radius or
margin in output space.

=] F = = £ DA



Sparse Local Lipschitz Certificate

The sparse certificate is,

rsei(x, s)

= min {rinp(x, s),

p(x) }
2[|Ally hup(x;,9)

Equivalent to local Lipschitz

analysis for s = 0.




Sparse Local Lipschitz Certificate

Optimize over sparsity levels for
best certificate,
rsparse(x)

= max rs;. (X, S)
s

= maxmin {rmp(x, s), p(x)
s

2||A]l, /inp(x,S)}'
At each x, the optimal sparsity

level s* gives a specific reduced
network.




Reduced Dimensionality
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Figure: For an off-the-shelf trained network h, (a) and (b) represent the distribution of
widths of the particular reduced network h,.q at each input x. The reduced widths at
each layer correspond to the choice of optimal sparsity level.



Reduced Lipschitz constant
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Figure: Histogram of optimal sparse local Lipschitz scale across inputs. At each input,
the size of the reduced network corresponds to s*(x). The red line marks the naive
estimate of global Lipschitz constant.



Certified Robustness for Feed-forward Neural Networks
We plot the certified accuracy of a trained predictor using,

> Naive certificate with global Lipschitz constant = HK'H HWkH2

» SLL certificate with local Lipschitz constant = [/} || WA, S~ 1]H2.

» Heuristic upper bound from common adversarial attacks.
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Figure: Security curves for feed-forward neural networks on MNIST.



Sparse Local Lipschitz w.r.t Parameters and Inputs

> Analysis can be extended to perturbations to both weights and inputs.
> Sparse local radius again quantifies stability of inactive index sets.

> Similar reduced dimensionality effect for a perturbed input X and
perturbed weight W within local radius.



Robust Generalization Bound for Feedforward Neural Networks

Theorem

With probability at least (1 — «) over the choice of i.i.d training sample St and
unlabeled data Sy, for any multi-layered neural network predictor h € H**!
with parameters {W*} the robust stochastic risk is bounded as,

Reob () — Reon (h) <

@(b I ( (gt #10)) +in(2)

2m

m

K41
Lioss(1
+ Lioss (1 +v) H HwkH 1+ Hsk,skl(wk))
1 2,00

Here, s = (517 . ,SK) is an optimal sparsity level chosen based on St and Sy.

fisk sk—1 (W¥) is a reduced babel function and ||W||, __ is the maximal {> norm
of a row in W.



Thank you for attending my talk :)



Certified Robustness for Feed-forward Neural Networks

Corollary

Consider a trained depth-K + 1 feed-forward neural network h.

Let s = (s',...,s") be a choice of sparsity levels at each layer

Let vi¥ .= (s"1, %) be the corresponding layer-wise input-output sparsity
levels.

The predicted label remains unchanged, whenever ||8||, < reert(x,8), where

min ri(:i)(q)[kil](x)v"(k)) p(x)
BT P WO, 2TATL I [Pas (WAL, )

reert (X, 8) := min

Here, r'

» 'inp

and Py p—1 (W*) is the activated weight at layer k.

is the local radius for the feedforward map at layer k.



Reduced Widths for regularized networks
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Figure: For an original regularized trained network h, this plot is a histrogram of the
size of a particular reduced network h..q at each input x. The reduced widths at each
layer correspond to the choice of optimal sparsity level.



Reduced Lipschitz constant for regularized networks
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the size of the reduced network corresponds to s*(x).



Reduced Babel Function

Definition
For any matrix W € R¥*% e define the reduced babel function at row
sparsity level s; € {0,...,di — 1} and column sparsity level

s2 €{0,...,d> — 1} as,

_ NT
sy 55 (W) := max  max Z ma [Py (Wi)Psy (W) | ,
ncld, Jjen | 5oCldal || Py (Wi)ly 1Ps (W)l
[J1|=d1—s1 ‘Ei;}’ |[J2|=d2—s2

the maximum cumulative mutual coherence between a reference row in J; of
size (di — s1) and any other row in Ji, each restricted to any subset of columns
Jo of size® (dz — 52).

Lemma

For any matrix W € R%*%  the operator norm of any non-trivial* sub-matrix
indexed by sets J1 C [d1] of size (dy — s1) and J» C [d2] of size (d2 — s2) can
be bounded as

1Psr,0(W)lly < V1 psy,5 (W) - [[W][ -

3When s; = d; — 1, |J1| = 1, we simply define H(sy,s9) (W) 1= 0.
“Thatis0<s, <dy —1land0<s; <dy—1.



